

Mina Talati Vinod Kumar Yadav

KHANNA BOOK PUBLISHING CO. (P) LTD.

PUBLISHER OF ENGINEERING AND COMPUTER BOOKS 4C/4344, Ansari Road, Darya Ganj, New Delhi-110002 Phone: 011-23244447-48 Mobile: +91-99109 09320 E-mail: contact@khannabooks.com Website: www.khannabooks.com Dear Readers,

To prevent the piracy, this book is secured with HIGH SECURITY HOLOGRAM on the front title cover. In case you don't find the hologram on the front cover title, please write us to at contact@khannabooks.com or whatsapp us at +91-99109 09320 and avail special gift voucher for yourself.

Specimen of Hologram on front Cover title:

Moreover, there is a SPECIAL DISCOUNT COUPON for you with EVERY HOLOGRAM.

How to avail this SPECIAL DISCOUNT:

Step 1: Scratch the hologram

Step 2: Under the scratch area, your "coupon code" is available

Step 3: Logon to www.khannabooks.com

- Step 4: Use your "coupon code" in the shopping cart and get your copy at a special discount
- Step 5: Enjoy your reading!

ISBN: 978-93-91505-43-1 Book Code: DIP120EN

Applied Physics-I

by Mina Talati, Vinod Kumar Yadav [English Edition]

First Edition: 2021

Published by:

Khanna Book Publishing Co. (P) Ltd. Visit us at: www.khannabooks.com Write us at: contact@khannabooks.com *CIN: U22110DL1998PTC095547*

To view complete list of books, Please scan the QR Code:

Printed in India

Copyright © Reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior permission of the publisher.

This book is sold subject to the condition that it shall not, by way of trade, be lent, re-sold, hired out or otherwise disposed of without the publisher's consent, in any form of binding or cover other than that in which it is published.

Disclaimer: The website links provided by the author in this book are placed for informational, educational & reference purpose only. The Publisher do not endorse these website links or the views of the speaker/ content of the said weblinks. In case of any dispute, all legal matters to be settled under Delhi Jurisdiction only.

अखिल भारतीय तकनीकी शिक्षा परिषद् (मारत सरकार का एक सांविधिक निकाय) (शिक्षा मंत्रालय, मारत सरकार) नेल्सन मंडेला मार्ग, बसंत कुज, नई दिल्ली–110070 दूरमाष : 011–26131498 ई–मेल : chairman@aicte-india.org

प्रो. अनिल डी. सहम्रबुद्धे अघ्यक्ष Prof. Anil D. Sahasrabudhe ^{Chairman}

ALL INDIA COUNCIL FOR TECHNICAL EDUCATION (A STATUTORY BODY OF THE GOVT. OF INDIA) (Ministry of Education, Govt. of India) Nelson Mandela Marg, Vasant Kunj, New Delhi-110070 Phone : 011-26131498 E-mail : chairman@aicte-india.org

FOREWORD

Engineering has played a very significant role in the progress and expansion of mankind and society for centuries. Engineering ideas that originated in the Indian subcontinent have had a thoughtful impact on the world.

All India Council for Technical Education (AICTE) had always been at the forefront of assisting Technical students in every possible manner since its inception in 1987. The goal of AICTE has been to promote quality Technical Education and thereby take the industry to a greater heights and ultimately turn our dear motherland India into a Modern Developed Nation. It will not be inept to mention here that Engineers are the backbone of the modern society - better the engineers, better the industry, and better the industry, better the country.

NEP 2020 envisages education in regional languages to all, thereby ensuring that each and every student becomes capable and competent enough and is in a position to contribute towards the national growth and development.

One of the spheres where AICTE had been relentlessly working from last few years was to provide high-quality moderately priced books of International standard prepared in various regional languages to all it's Engineering students. These books are not only prepared keeping in mind it's easy language, real life examples, rich contents and but also the industry needs in this everyday changing world. These books are as per AICTE Model Curriculum of Engineering & Technology – 2018.

Eminent Professors from all over India with great knowledge and experience have written these books for the benefit of academic fraternity. AICTE is confident that these books with their rich contents will help technical students master the subjects with greater ease and quality.

AICTE appreciates the hard work of the original authors, coordinators and the translators for their endeavour in making these Engineering subjects more lucid.

- AD ahren

(Anil D. Sahasrabudhe)

ACKNOWLEDGEMENT

The author(s) are grateful to AICTE for their meticulous planning and execution to publish the technical book for Diploma students.

We sincerely acknowledge the valuable contributions of the reviewer of the book Prof. Medha Shirish Gijare, for making it students' friendly and giving a better shape in an artistic manner.

This book is an outcome of various suggestions of AICTE members, experts and authors who shared their opinion and thoughts to further develop the engineering education in our country.

It is also with great honour that we state that this book is aligned to the AICTE Model Curriculum and in line with the guidelines of National Education Policy (NEP) -2020. Towards promoting education in regional languages, this book is being translated in scheduled Indian regional languages.

Acknowledgements are due to the contributors and different workers in this field whose published books, review articles, papers, photographs, footnotes, references and other valuable information enriched us at the time of writing the book.

Finally, we like to express our sincere thanks to the publishing house, M/s. Khanna Book Publishing Company Private Limited, New Delhi, whose entire team was always ready to cooperate on all the aspects of publishing to make it a wonderful experience.

Mina Talati Vinod Kumar Yadav

PREFACE

The book titled 'Applied Physics-I' is an outcome of the experience of our teaching of fundamental physics courses at the diploma engineering level. We have included the topics of fundamentals of physics relevant to diploma engineering courses and as per the requirements of Outcome Based Education (OBE) model curriculum of AICTE for 1st-year diploma engineering and new National Education Policy (NEP) 2020. Sincere efforts have been made to keep the content of this book interesting, student-friendly and lucid while at the same time revealing and explaining fundamental concepts of physics to the engineering students have not been compromised.

Throughout the preparation of the manuscript of this book, we have considered various standard textbooks, research papers, and reports, and accordingly, we have included questions, solved and supplementary problems. The book covers problems of different difficulty levels which certainly can be solved with some thoughtful efforts. In this book, the emphasis has been laid on definitions of physical phenomena and physical quantities, laws of physics, and various physics formulae relevant to the curriculum for quick revision of basic principles. We have also tried to provide various illustrations and examples in each unit for a proper understanding of the concepts of physics that a student can relate to. For further clarification of the concepts, we have used the figures and diagrams available under fair use policies and creative commons licenses.

It is important to note that, we have included the relevant twelve laboratory practical as per curriculum at the end of each unit. In addition, we have put together some essential formulae and conversion of units in the annexure section. In each unit, video and/ simulation links have been given to support and boost the user's desire for self-learning of the topics within the limits of the curriculum.

We sincerely hope that the book will create curiosity and inspire the students to learn, discuss and make use of the basic principles of physics for addressing the problems related to their core disciplines. The reader's beneficial comments and suggestions will play a major role in improving the future editions of the book. It gives us immense pleasure to place this book, written under 'Technical Book Writing Scheme' for 1st-year diploma engineering, in the hands of the teachers and students.

Mina Talati Vinod Kumar Yadav

OUTCOME BASED EDUCATION

The outcome-based curriculum has been developed for the implementation of an outcome-based education for diploma engineering students. It incorporates the outcome-based assessment also through which educators and evaluators will be able to assess and evaluate the achievement of students in the form of standard, specific and measurable program outcomes. Outcome-based education emphasizes achieving program-specific skills systematically and gradually which diploma engineering students must acquire. Through outcome-based education, learners will be able to commit to achieving a minimum standard without quitting the program at any level. Upon completion of the specific program with an outcome-based education strategy, diploma engineering students will be able to arrive at the following program outcomes:

- **1. Basic and Discipline specific knowledge**: Apply knowledge of basic mathematics, science and engineering fundamentals and engineering specialization to solve the engineering problems.
- 2. **Problem analysis:** Identify and analyse well-defined engineering problems using codified standard methods.
- **3. Design/ development of solutions:** Design solutions for well-defined technical problems and assist with the design of systems components or processes to meet specified needs.
- **4. Engineering Tools, Experimentation and Testing**: Apply modern engineering tools and appropriate technique to conduct standard tests and measurements.
- **5. Engineering practices for society, sustainability and environment:** Apply appropriate technology in context of society, sustainability, environment and ethical practices.
- 6. Project Management: Use engineering management principles individually, as a team member or a leader to manage projects and effectively communicate about well-defined engineering activities.
- **7. Life-long learning**: Ability to analyse individual needs and engage in updating in the context of technological changes.

COURSE OUTCOMES

After completion of the course the students will be able to:

- CO-1: Select the physical quantities for accurate and precise measurements of engineering problems and estimate the errors in measurements.
- CO-2: Perform addition, subtraction, multiplication (scalar and vector product) of vector and find resolution of vectors for relevant applications. Analyse and apply the type of motions to resolve the engineering applications.
- CO-3: Define scientific terms work, energy and power and their units and derive relationships between them to solve engineering problems. Describe forms of friction and methods to minimize friction between different surfaces. State the principle of conservation of energy and identify various forms of energy and energy transformations.
- CO-4: Compare and relate physical properties associated with linear motion and rotational motion and apply conservation of angular momentum principle to known problems
- CO-5: Select relevant materials in industry by analysing the physical properties of solids and liquids to solve broad-based engineering problems.
- CO-6: Explain the basic principles of heat and measure the temperature using various thermometers. Identify and apply modes of heat transfer by knowing coefficient of expansion and thermal conductivity of material in related engineering applications.

Course Outcome	Expected Mapping with Program Outcomes (1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)						
Outcome	PO-1	PO-2	PO-4	PO-5	PO-6	PO-7	
CO-1	3	2	1	1	2	1	1
CO-2	3	2	1	1	3	2	1
CO-3	3	2	1	1	2	1	1
CO-4	3	2	1	1	1	3	2
CO-5	3	3	1	1	2	2	2
CO-6	3	2	1	1	2	2	2

ABBREVIATIONS AND SYMBOLS

List of Abbreviations

General Terms				
Abbreviations	Full form	Abbreviations	Full form	
amu	Atomic Mass Unit	PO	Programme Outcome	
AU	Astronomical Units	PRT	Platinum Resistance Thermometer	
CO	Course Outcome	TME	Total Mechanical Energy	
KE	Kinetic Energy	UO	Unit Outcome	
LC	Least Count	UTS	Ultimate Tensile Strength	
PE	Potential Energy			
	Units	Used		
Abbreviations	Full form	Abbreviations	Full form	
Å	angstrom	kW-h	kilowatt-hour	
BTU	British Thermal Unit	m	meter	
°C	degree Celsius	mm of Hg	millimeters of Hg	
cal	calorie	N	newton	
eV	electron volt	Р	Poise	
°F	Fahrenheit	Pa	Pascal	
Hz	hertz	PI	Poiseuille	
J	joule	°R	Rankine	
К	kelvin	St	Stokes	
kg	kilogram	W	Watt	

List of Symbols

Symbols	Description	Symbols	Description
Å	angstrom	η	Coefficient of viscosity OR modulus of rigidity
В	Bulk Modulus	λ	wavelength
R _e	Reynolds number	μ_k	Coefficient of kinetic friction
Т	time period	μ_{s}	Coefficient of static friction
Y	Young's modulus	ρ	Density
α	Coefficient of linear expansion	ω	angular velocity
β	Coefficient of surface expansion	f	Frequency
γ	Coefficient of volume expansion	f_k	Kinetic friction
V	velocity	fs	Static friction

LIST OF FIGURES

Unit 1:	Physical World, Units and Measurements	Page No.
Fig. 1.1:	Vernier caliper	18
Fig. 1.2:	No zero error of vernier caliper	21
Fig. 1.3:	Positive zero error of vernier caliper	21
Fig. 1.4:	Negative zero error of vernier caliper	21
Fig. 1.5:	No zero error of micrometer screw gauge	24
Fig. 1.6:	Positive zero error of micrometer screw gauge	24
Fig. 1.7:	Negative zero error of micrometer screw gauge	24
Fig. 1.8:	Screw gauge	24
Fig. 1.9:	Spherometer	28
Fig. 1.10:	Measurement of Sagitta 'h'	29
Fig. 1.11:	Triangle of the legsof spherometer	30
Unit 2:	Force and Motion	
Fig. 2.1:	Diagram of Vector	34
Fig. 2.2:	Triangle law diagram	35
Fig. 2.3:	Parallelogram law diagram	35
Fig. 2.4:	Subtraction of vector diagram	36
Fig. 2.5:	Resolution of vector diagram	36
Fig. 2.6:	Block on inclined plane diagram	37
Fig. 2.7:	Component of weight diagram	38
Fig. 2.8:	Lawn roller diagram	38
Fig. 2.9:	Dot product of two vector diagram	39
Fig. 2.10:	Cross product of vector diagram	40
Fig. 2.11:	Cross product of two vector diagram	40
Fig. 2.12:	Unit vectors along axes diagram	40
Fig. 2.13:	Rocket diagram	43
Fig. 2.14:	Rocket propulsion diagram	43
Fig. 2.15:	Weight suspended diagram	45
Fig. 2.16:	Circular motion diagram with angular displacement	47
Fig. 2.17:	Diagram for acceleration in non-uniform circular motion	48
Fig. 2.18:	Banking of road diagram	49
Fig. 2.19:	Bending of cyclist diagram	49
Fig. 2.20:	Gravesand's apparatus	54
Fig. 2.21:	Diagram of Weights P, Q and R with directions	56

Fig. 2.22:	Triangle diagram of P, Q and R	56
Fig. 2.23:	Parallelogram diagram of P, Q and R ₁	56
<i>Unit 3</i> :	Work, Power and Energy	
Fig. 3.1:	Example of (a) zero work (b) negative work and (c) positive work done	62
E:~ 2.2.	Static fuiction (f) sating on a hor mating on a surface aliding fuiction (f)

Fig. 3.2:	Static friction (f_s) acting on a box resting on a surface, sliding friction ($f_{sliding}$)		
	and rollingfriction (f _{rolling}) when a box moves on a surface	64	
Fig. 3.3:	Friction (f) vs. applied force ($ \mathbf{F}_A $) and the limiting friction	64	
Fig. 3.4:	A block on an inclined plane	66	
Fig. 3.5:	Schematic diagram of a free fall of a ball	69	
Fig. 3.6:	Experimental setup for determining the coefficient of limiting friction	75	
Fig. 3.7:	Experimental setup for verifying the law of conservation of mechanical		
	energy using double inclined plane and a spherical steel ball	79	

Unit 4: Rotational Motion

Fig. 4.1:	Rotational motion	84
Fig. 4.2:	Torque	85
Fig. 4.3:	Angular momentum	86
Fig. 4.4:	Moment of inertia	86
Fig. 4.5:	Perpendicular axis theorem	89
Fig. 4.6:	Parallel axis theorem	89
Fig. 4.7:	Flywheel	95

Unit 5: Properties of Matter

Fig. 5.1:	Tensile stress diagram	102
Fig. 5.2:	Compressive stress diagram	102
Fig. 5.3:	Volumetric stress diagram	102
Fig. 5.4:	Longitudinal strain diagram	102
Fig. 5.5:	Volumetric strain diagram	103
Fig. 5.6:	Shear stress diagram	103
Fig. 5.7:	Shear strain diagram	103
Fig. 5.8:	Stress and strain curve diagram	105
Fig. 5.9:	Fluid pressure with height diagram	107
Fig. 5.10:	Torricelli barometer	107
Fig. 5.11:	Manometer	108
Fig. 5.12:	Fortin's barometer	108
Fig. 5.13:	Hydrostatics paradox diagram	109
Fig. 5.14:	Diagram for explanation of surface tension	110
Fig. 5.15:	Surface tension on liquid surface diagram	110
Fig. 5.16:	Angle of contact diagram for glass-water	111

Fig. 5.17:	Angle of contact diagram for glass-mercury	111
Fig. 5.18:	F_a adhesive force > F_c cohesive force	111
Fig. 5.19:	F_a adhesive force $< F_c$ cohesive force	111
Fig. 5.20:	Velocity distribution of fluid flow in (a) beaker (b) a pipe	114
Fig. 5.21:	Steady flow of fluid through a conduit of a different area of cross-sections	120
Fig. 5.22:	Flow of fluid through an elevated conduit explained using Bernoulli's theorem	120
Fig.5.23:	Experimental setup for determining the force constant of a	
	spring using Hooke's law	126
Fig. 5.24:	Experimental setup for measuring the viscosity of a given liquid using Stokes' law	130
Fig. 5.25:	Diagram for ascent formula of capillary	137
Fig. 5.26:	Diagram for component of force in capillary	137
Unit 6:	Heat and Thermometry	
Fig. 6.1:	Modes of heat transfer: (a) conduction (b) convection (c) radiation	141
Fig. 6.2:	Temperature scales	143
Fig. 6.3:	Schematic diagram of a bimetallic thermometer	144

Fig. 6.4:	Schematic diagram of Platinum Resistance Thermometer (PRT)	145
Fig. 6.5:	Block diagram of Optical or Radiation Pyrometer	145
Fig. 6.6 :	Experimental setup for determining the linear thermal expansion of a metal rod	153

LIST OF TABLES

Unit 1: Physical World, Units and Measurements	Page No.
Table 1.1: Seven fundamental or base quantities	3
Table 1.2: Derived units	3
Table 1.3: Supplementary quantity	3
Table 1.4: Prefixes of SI units, power of 10 and symbol of prefixes	3
Table 1.5: Dimensional symbols of base quantities	4

GUIDELINES FOR TEACHERS

To implement Outcome Based Education (OBE) knowledge level and skill set of the students should be enhanced. Teachers should take a major responsibility for the proper implementation of OBE. Some of the responsibilities (not limited to) for the teachers in OBE system may be as follows:

- Within reasonable constraints, they should channelize their time for the advantage of all students.
- They should assess the potential of students only upon defined criterion and without any bias and discrimination.
- They should try to cultivate and grow the learning abilities of the students to a certain level before they leave the institute.
- They should try to ensure that all the students are gain sufficient quality knowledge as well as competence aligning with their core discipline after they finish their education.
- They should always encourage the students to develop their ultimate performance capabilities.
- They should facilitate and encourage group work and team work to consolidate newer approach.
- They should follow Blooms taxonomy in every part of the assessment.

	Level	Teacher should check	Student should be able to	Possible mode of assessment
	Creatin g	Student ability to create	Design or create	Micro project
Ev	aluating	Student ability to justify	Argue or defend	Assignment
Ar	alysing	Student ability to distinguish	Differentiate or distinguish	Project/Lab Methodology
A	pplying	Student ability to use information	Operate or demonstrate	Technical Presentation/ Demonstration
Unde	erstanding	Student ability to explain the ideas	Explain or classify	Presentation/ Seminar
Rem	embering	Student ability to recall (or remember)	Define or recall	Quiz

Bloom's Taxonomy

Students should take equal responsibility for implementing the OBE. Some of the responsibilities (not

GUIDELINES FOR STUDENTS

limited to) for the students in OBE system are as follows:

- Students should be well aware of each UO before the start of a unit in each and every course.
- Students should be well aware of each CO before the start of the course.
- Students should be well aware of each PO before the start of the programme.
- Students should think critically and reasonably with proper reflection and action.
- Learning of the students should be connected and integrated with practical and real-life consequences.
- Students should be well aware of their competency at every level of OBE.

CONTENTS

Fore	eword		iii
Acknowledgement			v
Pref	ace		vii
Out	come Ba	ased Education	ix
Cou	Course Outcomes		
Abb	Abbreviations and Symbols		
List	of Figu	res	xiii
List	of Table	25	xvi
Guidelines for Teachers		xvii	
Gui	delines	for Students	xviii
UN	IT 1: I	Physical World, Units and Measurements	1-32
		Specifics	1
	Ratio	-	1
	Pre-re	equisites	1
	Unit (Dutcomes	1
1.1	Physic	cal quantities	2
	1.1.1	Physical quantities	2
	1.1.2	Fundamental and derived units	2
	1.1.3	System of units	3
	1.1.4	Dimensions and dimensional formulae of physical quantities	4
1.2	Dimensional analysis		5
	1.2.1	Principle of Homogeneity of Dimensions	5
	1.2.2	Dimensional Equation and Their Applications	6
	1.2.3	Limitations of Dimensional Analysis	7
1.3	Measurements		9
	1.3.1	Measurements	9
	1.3.2	What is a Measuring Instrument?	9
	1.3.3	Least Count of Measuring Instrument and Zero Errors	9
	1.3.4	Types of Measurement	10

1.4	Errors in measurements		11
	1.4.1	Errors and Types of Errors	11
	1.4.2	Estimation of Errors in Measurements	11
	1.4.3	Error Propagation in Arithmetic Operations	12
	1.4.4	Significant Figures or Numbers	12
	Unit s	summary	15
	Exerc	ises	15
	Practical		18
	Know more		31
	References and suggested readings		32
Uni	it 2: F	Force and Motion	33-59
	Unit s	specifics	33
	Ratio	nale	33
	Pre-requisites		33
	Unit outcomes		33
2.1	Scalar and Vector quantities		34
	2.1.1	Scalar and Vector quantities	34
	2.1.2	Addition and subtraction of vectors	35
	2.1.3	Resolution of a vector	36
	2.1.4	Applications of a vector	37
	2.1.5	Scalar and vector product of two vectors	39
2.2	Force and momentum		42
	2.2.1	Force	42
	2.2.2	Law of conservation of linear momentum	42
	2.2.3	Application of conservation of linear momentum	43
	2.2.4	Impulse and its applications	44
2.3	Circular motion		
	2.3.1	Definition of angular quantities	46
	2.3.2	Relation between linear velocity (v) and angular velocity (w)	47
	2.3.3	Centripetal and centrifugal force	48
	Unit summary		51
	Exercises		51
	Practical		53
	Know more		58
	References and suggested readings		58

Un	it 3: V	/ork, Power and Energy	60-82
	Unit S	pecifics	60
	Ratior	60	
	Pre-requisites		60
	Unit outcomes		60
3.1	Work		61
	3.1.1	Work – introduction and definition	61
	3.1.2	Work – examples	62
3.2	Friction		63
	3.2.1	Friction – concepts and types	63
	3.2.2	Laws of limiting friction and coefficient of friction	64
	3.2.3	Reducing friction and its engineering applications	65
	3.2.4	Work done against friction with related applications	65
3.3	Energy and power		67
	3.3.1	Energy – introduction, kinetic energy and potential energy	67
	3.3.2	Gravitational potential energy	68
	3.3.3	Mechanical energy and conservation of mechanical energy	69
	3.3.4	Transformation of energy	70
	3.3.5	Power and its units	71
	3.3.6	Power and work relationship	71
	Unit summary		72
	Exercises		73
	Practical		74
	Know	more	82
	Refere	ences and suggested readings	82
Un	it 4: R	otational Motion	83-99
	Unit S	pecifics	83
	Ratior	nale	83
	Pre-re	quisites	83
	Unit c	utcomes	83
4.1	Rotational Motion		84
	4.1.1	Translational and rotational motion with examples	84
	4.1.2	Definition of torque and angular momentum	85
	4.1.3	Moment of Inertia	86

	4.1.4	Conservation of angular momentum and its applications	88
	4.1.5	Radius of gyration	88
	4.1.6	Theorem of parallel and perpendicular axes (statement only)	88
	4.1.7	Moment of inertia of the following bodies	89
	Unit s	ummary	91
	Exerc	ises	92
	Practi	cal	94
	Know	more	98
	Refere	ences and suggested readings	99
Un	it 5: P	Properties of Matter	100-138
	Unit S	Specifics	100
	Ratio	nale	100
	Pre-re	equisites	100
	Unit c	outcomes	100
5.1	1 Elasticity		101
	5.1.1	Definition of stress and strain	101
	5.1.2	Hooke's law and modulus of elasticity	103
	5.1.3	Types of moduli of elasticity	103
	5.1.4	Significance of stress-strain curve	104
5.2	Pressu	ire	106
	5.2.1	Definition of pressure	106
	5.2.2	Atmospheric pressure	107
	5.2.3	Gauge pressure and absolute pressure	108
	5.2.4	Fortin's barometer and its applications	108
5.3	Surface tension		110
	5.3.1	Concepts of surface tension	110
	5.3.2	Cohesive and adhesive forces	110
	5.3.3	Angle of contact	111
	5.3.4	Ascent formula of liquid in capillary tube	112
	5.3.5	Applications of surface tension	112
	5.3.6	Factors affecting the surface tension	112
5.4	Viscosity and coefficient of viscosity		113
	5.4.1	Viscosity, coefficient of viscosity and terminal velocity	113
	5.4.2	Stokes' law and effect of temperature on viscosity	115
	5.4.3	Applications of viscosity in hydraulic systems	116

5.5	Hydrodynamics		117
	5.5.1	Fluid motion	118
	5.5.2	Streamline and turbulent flow	118
	5.5.3	Reynolds Number	119
	5.5.4	Equation of continuity	119
	5.5.5	Bernoulli's theorem and its applications	120
	Unit s	ummary	122
	Exercises		123
	Practical		125
	Know more		137
	Refere	ences and suggested readings	138
Un	it 6: H	eat and Thermometry	140-160
	Unit S	pecifics	140
	Ratior	nale	140
	Pre-re	quisites	140
	Unit c	utcomes	140
6.1	Heat t	ransfer and temperature measurement	140
	6.1.1	Concepts of heat and temperature	140
	6.1.2 1	Modes of heat transfer: conduction, convection and radiation	140
	6.1.3 §	Specific heats	141
	6.1.4 §	Scales of temperatures and their relationship	142
	6.1.5	Types of thermometers and their uses	143
6.2	Temp	erature effect on solid, liquid, and gas	146
	6.2.1 I	Expansion of solids, liquids and gases	146
	6.2.2 (Coefficient of linear, surface and cubical expansion and relation amongst them	147
	6.2.3 (Coefficient of thermal conductivity	148
	6.2.4 I	Engineering applications	149
	Unit s	ummary	150
	Exerci	ses	151
	Practi	cal	152
	Know	more	159
	Refere	ences and suggested readings	160

(xxiii)

ANNEXURES	67
Annexure I: Important Formulae	
Annexure II: Conversion Factors	
Annexure III: Some general and specific instructions when working in the laboratory	
APPENDICES 168-1	171
Appendix A: Suggestive template for practical	
Appendix B: Indicative evaluation guidelines for practical / projects / activities in group	
Appendix C: Assessments aligned to Bloom's level	
Appendix D: Records for practical	
References for Further Learning	172
CO and PO Attainment Table	173
INDEX	176